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Abstract-Measurements are presented for the budgets of the average longitudinal and lateral heat fluxes in 
the self-preserving region of a turbulent plane wake. Using these measurements and a time scale based on the 
temperature variance and the average temperature dissipation, numerical values are proposed for the 
constants that appear in currently used models for the temperature-pressure gradient interaction. Except in 
the outer intermittent region, the lateral heat flux is related in a simple way to the lateral Reynolds shear 

stress. This simple relation is emphasised when only the turbulent flow zones are considered. 

INTRODUCTION 

IT IS WELL recognised that the ability to predict the 
rate of transport of momentum and heat in turbulent 
shear flows is important for many practical 
applications. There is also increasing evidence to 
indicate that a significant portion of this transport is 
carried by spatially coherent structures whose degrees 
of organisation, strength and other characteristics 
may vary from flow to flow. Whilst prediction of the 
transport of momentum and heat or mass on the basis 
of these structures remains a worthwhile objective for 
the future, turbulence modelling based on the time- 
averaged Navier-Stokes equations continues to meet 
an important need. Within the framework of 
turbulence modelling, it is generally accepted that the 
use of Reynolds stress transport equations is 
preferable to the use of eddy viscosity models. 
Analogously, transport equations for the time- 
averaged heat fluxes have been shown to be of greater 
validity than eddy diffusivity models. 

Second-order, single-point closure models for 
calculating average fluxes of passive scalar quantities 
have received significant attention [l, 23. In the 

transport equations for ul3 and z, the average 
longitudinal and lateral heat fluxes, respectively, the 
correlation between the temperature fluctuation and 
the gradient (in either x or y) of the pressure 
fluctuation represents an important contribution and 
is of the same order as the production terms in the 
equations. Various models, e.g. [3-51, have been 
proposed for this correlation. The majority of these 
models have been applied to situations where 
temperature is a passive marker of the flow, but there 
have also been applications, e.g. [6], to the convective 
planetary boundary layer where buoyancy effects are 
dominant. It is true, as has been pointed out by 
Launder [3], that an accurate prediction of the scalar 
field depends largely on the ability to predict the 
velocity field accurately. It is nevertheless also true 
that terms in the transport equations for the heat 
fluxes are relatively more accessible to measurement 

than those in transport equations for the Reynolds 
stresses. In particular all terms in the transport 

equation for fP, which together with a transport 
equation for the temperature dissipation provides a 
turbulence time scale for the thermal field, can be 
measured. By contrast, the assumption of isotropy is 
usually made in evaluating the turbulent energy 
dissipation, the pressure diffusion term being inferred 
by difference. 

Since the various proposals for the temperature- 
pressure gradient correlation involve a number of 
constants, it is desirable that the latter be determined 
directly by experiment. Applications of existing 
models have often, although not always, selected the 
constants by optimising agreement of the computed 
results with experiment. It has also been noted [3,7] 
that the constants can vary considerably between 
different flows. 

In a previous paper [7], constants that appear in 
models of the temperature-pressure gradient 
correlation were directly inferred from measurements 
in a classical turbulent flow: a plane jet into still air. In 
this paper, we present measurements of the budgets of 

the heat fluxes z and z in another classical flow: the 
wake of a circular cylinder developing with zero mean 
pressure gradient. Except for the temperature- 
pressure gradient correlations which were obtained by 

difference, all terms in the transport equations for z 

and z were measured at three stations in the self- 
preserving region of the flow. Since detailed 
measurements of these terms were made in a similar 
flow by Fabris [8-111 at primarily one station in the 
self-preserving flow region, a comparison is made, 
whenever possible, between the present measurements 
and those of Fabris. We also consider non- 
dimensional structural parameters associated with the 
turbulence structure which may be of use in 
parameterising heat transport. The existence of 
intermittency is taken into account by presenting 
conditionally sampled measurements in the outer part 
of the wake. 
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NOMENCLATURE -----I 
a0 

bo 

CltJ,C28 

d 

L 

N 

VH 

structural parameter for the thermal 
field, defined in equation (11) 
structural parameter for the thermal 
field, defined in equation (10) 
non-dimensional constants in 
equations (8) and (9) 
outer diameter of wake-generating 
tube [m] 
Y value at half-maximum velocity 
defect point [m] 
average dissipation of 132/2, defined as 

u[(ae/ax)2 + (ae/aY)2 + (ae/az)2] 
[C2 s- ‘1 
kinematic pressure fluctuation 
Cm’ sK2] 
maximum (centreline) mean 
temperature, relative to ambient c”C] 
mean temperature, relative to 
ambient [“C] 

average (thermometric) longitudinal 
heat flux [m s-i “C] 
maximum (centreline) velocity defect 
[m ss’] 
mean velocity in x direction [m s-i] 
velocity fluctuations in x, y and z 
directions [m s- ‘1 

average (thermometric) lateral heat 
flux [m s-i C] 

X longitudinal direction, cf. Fig. 1 [m] 

x0 effective or virtual origin, equations 
(5)-(7), equal to - 125d [m] 

Y in direction of main shear, cf. Fig. 1 
[ml. 

Greek symbols 
c( molecular thermal diffusivity [m2 s- ‘1 
E average turbulent energy dissipation 

[mZ se31 

rl non-dimensional distance, y/L 
0 temperature fluctuation, 0 = 0 [“C] 

82 temperature variance [“C’] 
1 Taylor microscale, 

ut”2/(aulax)i1’2 [m] 
V kinematic viscosity [m2 s-i] 

P correlation coefficient between 
velocity and/or temperature -- 
fluctuations, e.g. pUe = u0/(u2 “2821’2) 

7e time scale for thermal field [@/2N] 

rb time scale for thermal field [e2/2N,,]. 

Subscripts 
0 conditions at the wake centreline 
1 free-stream conditions 
t refers to quantities in only the 

turbulent flow region. 

J 

EXPERIMENTAL DETAILS 

The wake was generated by a stainless-steel tube of 
outer diameter (d) of 2.67 mm, mounted horizontally 
in the mid-plane of the working section 
(350 x 350 mm, 2.4 m long) of a non-return, blower- 
type wind tunnel. The tube was placed at a distance of 
20 cm downstream from the beginning of the working 
section. Measurements were made at a free-stream 
velocity U, of 6.7ms-’ (Reynolds number U,d/v 
= 1170) and zero pressure gradient, the latter 
achieved by slightly tilting the floor of the working 
section. The tube was electrically heated (N 100 W) to 
provide a passive marking of the flow by temperature 
at sufficiently large distances from the tube (at 
x/d = 420, To rr 0.82”C). Detailed measurements of 
various turbulence quantities were made at three 
streamwise stations: x/d = 273,420 and 600 (the co- 
ordinates used are shown in Fig. 1). 

Velocity fluctuations u and L’ were obtained with a 
x-wire, mounted in the x-y plane and comprising 
Pt-10 %Rh Wollaston wires (diameter = 5 pm, length 
2 0.9 mm) separated by about 0.9 mm in the spanwise 

z direction. The temperature fluctuation 0 was 
measured with a cold wire (Pt-lO%Rh, diameter 
= 0.63 pm, length 5 1 mm) placed about 0.5 mm in 

front of the wire crossing point of the x -probe. The 
hot wires were operated with DISA 55M 10 constant 
temperature anemometers at an overheat ratio of 0.8. 
The cold wire was operated with an in-house constant 
current circuit supplying 0.1 mA. 

The instantaneous voltages from the constant 
temperature and constant current anemometers were 
first filtered (2000 Hz), after applying appropriate 
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FIG. I. Definition sketch 
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FIG. 2. Average longitudinal beat flux distributions. 
c, x/d = 273; 0 420; i? 600; __ Fabris [9]. 

gains and offsets, and then sampled (4000 Hz) directly 
into a computer using an 11 bit plus sign A-D 
converter. Mean voltages from the anemometers were 
determined using a small data logging system 
operating at a sampling frequency of 10 Hz. This data 
logger was also used for calibrating the wires. Using 
the calibration constants of the wires, the digitised 
voltages were converted into digital time series for 
velocity and temperature. 

TRANSPORT EQUATIONS FOR HEAT FLUXES- 
RESULTS 

For a two-dimensional, small-deficit wake, the 
mean momentum and mean enthalpy equations can 
be approximated to 

u&,-d)-%i=0 
ay 

and 
- - 

c’,.T+ELo. 
ax ay 

(1) 

(2) 

Using the same order of approximation for (1) and (2), 

transport equations for the heat fluxes 2 and 2, 
written originally by Corrsin [12] in tensorial form, 
reduce to 

^ * 
“,;11()+u1)!T+~~!L+l(~)+gE =o 

?Y ay d~ 
(3) ox 8X 

advectron production diffuston dmipation 

advrction production dlflusm dlssipatinn 

Before considering collectively all the terms in (3) 
and (4) we turn our attention to the behaviour, across 

the wake, of the average heat fluxes uf? and 2 and the - 
behaviour of the correlations uv0 and ~‘6, the 
gradients of which represent the diffusion terms. 

The distributions in Figs. 2 and 3 of 2 and z, 
normalised by the self-prese~ing scales U,, T, and 
plotted in terms of the non-dimensional co-ordinate q, 
underline the good support for self-preservation for 
the range of x/d covered by the experiments. Fabris’ 

FIG. 3. Average lateral heat flux distributions. Symbols are 
as in Fig. 2. 

[S, lo] data at x/d = 420, are generally in closer 

agreement with the present %/U,T, than with the 

G/U,T, distributions. Note that for the region y > 0, 
the gradients aojay and aF/lay are positive and 

negative, respectively, while the correlations ~8, vt?, uu 
are negative, positive and positive, respectively. For 

y < 0, dU/ay, a_Tlay and z change sign. Our detailed 
measurements were made for y < 0 although 
symmetry about y = 0 was first verified. Fabris also 
verified symmetry so we were able to compare his 
y > 0 results directly with our y < 0 results. 

The normalised third-order transport correlations 

uvt?/tJ~T, and %/UiT,, which were first obtained by 
Fabris [8,9,11], are plotted in Figs. 4 and 5, 
respectively. Apart from supporting self-preservation, 

the present distributions, especially in the case of ?6, 
are in good agreement with those of Fabris. Whereas - 
v20 is symmetrical about q = 0, UVQ is antisymmetrical 
and indicates a change of sign at q 2: -0.8. This 
change of sign is most simply explained if, as suggested 
by Fabris, the correlation is viewed as a lateral 

transport of z. The negative values of i$ near the 

centreline reflect the inward transport of z away from 
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FIG 4. Correlation uu6/U& Symbols are as in Fig. 2. 
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FIG. 5. Correlation ~/L/~TO. Symbols are as in Fig. 2. 

the location of maximum 1~01, the positive values of 

uu0 in the outer wake region then reflecting the 

outward transport of u0 away from the maximum 121 

location. A similar shape for uu0 was obtained for a 
plane jet into still air [7] where it was shown that a 
gradient-diffusion model is qualitatively, although not 
quantitatively, applicable. 

Terms in equations (3) and (4) that involve 
differentiation with respect to y were evaluated by first 
applying least-square fits to the relevant distributions 
and then numerically differentiating these fits. Least- 
square fits were applied to the estimates for the 
derivatives. The advection terms in (3) and (4) involve 
differentiation with respect to x and were inferred from 

derivatives with respect to q, e.g. a$/& 

= ~/~&&~~/~L~aL/ax, using the experimentally 
verified assumption of self-preservation and the 
measured streamwise evolutions of U,, To and L, 
namely 

-l/Z 

The value of x0 was - 125d and in equation (6), the 
normalising temperature T, is the value of To 
(= 0.82”C) at x/d = 420. The various terms in 
equations (3) and (4) have been normalised by 
multiplying by (L/UiT’,) and are plotted in Figs. 6 and 
7. The terms are shown at each of the three stations 
although it would clearly have been sufficient, in the 
light of Figs. 6 and 7 and the previous figures, to have 
used a single distribution for each of the terms. The 
solid curves in Figs. 6 and 7 are shown mainly to 

0.04 

FIG. 6. Budget of average longitudinal heat flux. Solid 
curves are hand best tits. 

clarify the distinction between the various terms. 
Comparison with Fabris is not made in these figures as 
we did not have information corresponding to 
equations (5~(7) for Fabris’ experiments. It is 
nevertheless reasonable to expect, on the basis of Figs. 
2-5, good qualitative agreement between the present 

0.04 I 
0 X/d 273 ‘20 601 

Prod 0 0 0 

FIG. 7. Budget of average lateral heat flux. Solid curves are 
hand best fits. 
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heat flux budgets and those that could be inferred from shown in Fig. 8, estimates were made of the constants 
Fabris’ data. c,@ and czB that appear in the models, e.g. Cl] 

The budgets of z (Fig. 6) and 2 (Fig. 7) have 
generally similar appearances except near the 

centreline. For the u0 budget, there is a gain of u0 as a 
result of advection and especially diffusion at or near 
n = 0. Since the production term is zero at n = 0, the 
sum of the advection and diffusion terms is balanced 
by the temperature-pressure gradient correlation. 

Note that the quantities -(Z./U~T,)lUp/dx and 

-(L/U~T,)&?p/3y, which are equal to the sum of the 
first three terms on the left-hand sides of equations (3) 
and (4), are plotted in Figs. 6 and 7, respectively. It is 
clear from these figures that the dissipation 
(destruction or scrambling) is of comparable 
magnitude to the production almost everywhere 
across the wake. 

and 

ae Z -aii 
Pax = -cl@ tg -+cc,,ve- 

ay 
(8) 

ae ve -av 
p- = -CleIg+C28De~. 

ay OY 
(9) 

All models for the temperature-pressure gradient 
correlation or, more correctly, the pressure- 
temperature gradient correlation, involve a time scale 
for the turbulence. The latter is usually identified with 

the ratio 42126 where 4’/2 is the turbulent kinetic 
energy and E is the average dissipation corresponding 

to F/2. It has also been proposed that the time scale in 
the model should contain some weighting from the 
time scale of the thermal field. An obvious choice for 

this latter time scale is @/2N. The advantage of such a 
choice is that all three components of N can be 
measured. Measurements of N in different shear flows 
(e.g. [13-161) including the present one [17] have 
clearly indicated that N is significantly larger than 
N,,, the value obtained by assuming local isotropy. In 
the present flow [ 173, the ratio N/N,, increases from 
about 1.5 and 9 = 0 to almost 2.0 at the location of 
maximum temperature variation or dissipation. 

Estimates of q2/2& have invariably identified E with 

Go* an assumption which, to date, remains 
experimentally unverified. The present distribution of 

zg = F/2N is shown in Fig. 8 together with the 

timescale rb = 0’/2N,,. Apart from the smaller 
magnitude of To, the variation of rg across the wake is 
also smaller than that oft;. Using the distribution ofr, 

The first of the terms on the right-hand sides of (8) and 
(9) represents the effect of turbulence interactions only 
while the second term reflects the presence of mean 
strain rates. The possible influence of aF/ay, as 
considered, for example, by Dakos and Gibson [S], 

has been ignored here. The term in (9) c,,vB(a~/‘ldy) 
where v is the mean lateral velocity, is negligibly 
small. When applying (8) to the experimental data, 

p(aO/ax) was identified with -O(ap/LJx) (obtained 
from Fig. 6) since an order of magnitude argument can - 
clearly show that apO/ax is at least one order smaller 
than the terms that were retained in equations (3) and 
(4). A least-squares, multiple linear regression was 
applied to the experimental data to obtain cir, and cz8 
using equation (8). The fit obtained is shown in Fig. 9 
and the values obtained for the constants were: 
C 1o = 0.86; czO = 0.60. Jones and Musonge [2] 
obtained, from free shear flow data, a value of 1.0 for 
ciB, while Antonia [7] obtained about 2.3 for a jet in 
still air, using the measured value of N. Using 

c rs = 0.86, the values of p(aQ/ay) calculated using 

equation (9) were about 60% of the -tMp/ay values 
obtained from Fig. 7. It is possible that this difference 

reflects the inaccuracy of assuming a/dy(pQ negligible. 
As noted earlier, Launder and Samaraweera [l] 
applied a second-moment turbulence closure for 
calculating the heat transport in a turbulent wake. A 
discussion of the results obtained by these authors in 
the context of the present experiment seems 
unwarranted in view of the limited data available to 
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FIG. 8. Distribution of the time scale based on the average 
dissipation of temperature. 0 T@ U,/L; q tb V,/L. 

FIG. 9. Best fit to experimental values of -&3p/dx). 
0 Experiment; ~ least squares fit to equation (8) with 

C lB = 0.86 and czB = 0.60. 
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these authors and the limited agreement between 
calculated and measured Reynolds shear stress 
distributions. 

A FEW TURBULENCE 
STRUCTURE PARAMETERS 

It is of interest to consider the variation across the 
wake of non-dimensional quantities related directly to 
the turbulence structure of this flow. One such -- 
quantity, shown in Fig. 10, is the ratio &/~f?, 
considered by Launder and Samaraweera [l] to be 
insensitive as to whether self-preserving conditions 
have been established or not. Apart from reflecting the 

different behaviours of 2 and 2 near the centreline, 
there is no significant region over which this ratio can 
be considered as constant. The magnitude of the 
present ratio is larger than that for Fabris, reflecting 

the difference in the z distributions (Fig. 2) for these 
two experiments. Interestingly, but perhaps not 
surprisingly, the ratio of the turbulent zone averaged 
heat fluxes shows less variation in the intermittent part 
of the flow (at q = 0.9, the intermittency factor isabout _- 
0.95) than the ratio u0/u6. Conditioning of velocity 
and temperature is equal to the ambient temperature. 
This detection, discussed in more detail in ref. [18], 
was carried out using the probability density function 
of temperature. Note that the convention here, as for 

Fabris, is such that for example 

(u& EE (u - G,)(@ -@J, 

where ii, and 8, are averages in only the turbulent flow 
regions. 

FIG. IO. Ratio of average longitud~al and lateral heat 
lluxes. Symbols are as in Fig. 2. Open and filled in symbols 
represent conventional and conditionally turbulent values 
respectively. Fabris [S]: - conventional; --- 

conditionally turbulent. 
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FIG. 11. Correlation coefticients between velocity and 
temperature fluctuations. Symbols are as in Fig. 10. 

Another structure parameter is the correlation 
coefficient between velocity and/or temperature 
fluctuations. Conventional and conditional dis- 
tributions (Fig. 11) of the correlation coefficient 
between u and v are closely similar with those of the 
correlation coefficient between u and 0. The similarity 
between pun and pve is emphasised in Fig. 12 where the 
ratio pve/puu is remarkably constant, especially when 
conditionally turbulent values are considered in the 
intermittent region of the flow. Saetran [19] observed 
a similar constancy for pue/puu in a slightly heated 
boundary layer and suggested the following relation 
(absolute values have been added to make it 
compatible with the present and other free shear flows) 

FIG. 12. Ratio of correlation coefftcients pVe and pUv. 
Symbols are as in Fig. 10 (only a few tilled symbols are shown 

for clarity). 
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should be simplified when the focus is on only the 
turbulent flow regions. 
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FIG. 13. Structure parameter a,. Symbols are as in Fig. 10. 
Note the different scale for (a&. 

Saetran obtained a value of 1.15 for b, in the boundary 
layer, whereas a value of 1.0 seems more appropriate 
for the wake. 

Another structural parameter introduced by 
Bradshaw and Ferriss [20] to transform the transport 

equation for 9’ into one for v9 is a,, defined by 

PI lP”Ol 7 
atI = p2,41/2 = pJ-jT2. 

(11) 

The distribution of n, is shown in Fig. 13. Apart from 
the decrease towards zero near the centreline, there is a 
significant region for which a, is constant, equal to 
about 0.6. The increase in a, in the outer intermittent 
region becomes less pronounced when only turbulent 
zone averages (a ) 

“t 
are considered. This is more 

evident for the present measurements than in Fabris’ 
experiment. 

CONCLUSIONS 

The measured budgets, at three streamwise 
stations, of the longitudinal and lateral heat fluxes 
show good support for self-preservation and 
generally extend the usefulness of Fabris’ data from 
the point of view of turbulence modelling. Except 

for the magnitude of 2, there is good quantitative 
agreement between the two experiments. 
The temperature-pressure gradient correlation is 
generally comparable to the production term 
although the contribution by the advection and 

diffusion terms in the u8 budget cannot be ignored 
near the centreline. In modelling the correlation, it 
is important to take into account the anisotropy of 
the temperature dissipation to estimate the time 
scale of the turbulence. 
The close agreement between the correlation 
coefficients pVs and pUv suggests a relatively simple 
relation between the lateral heat flux and the 

Reynolds shear stress in this flow, i.e. 121 

= ~u~~(~~/u~)‘~~. The structural parameter a, is 
constant over a significant part of the flow. 
The relatively small variation of conditioned 
structural parameters in the intermittent region 
suggests that the prescription of model constants 
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TRANSFERT DE CHALEUR DANS UN JET PLAN TURBULENT 

R&sum&On prksente des mesures pour le bilan des flux de chaleur moyens longitudinaux et lateraux dan 
la r&ion de similitude du jet plan turbulent. A partir de ces mesures et d’une Cchelle de temps bas&e sur 1 
variance de la temp&rature et la dissipation moyenne de la tempi.rature, des valeurs numCriques son 
proposbes pour les constantes qui apparaissent dans les modeles couramment utilists pour l’interactio 
pression-gradient de tempbrature. Sauf dans la rkgion externe intermittente, le flux thermique lateral er 
relic de faGon simple $ la tension la&ale de cisaillement de Reynolds. Cette relation simple est mise e 

valeur lorsque seules les zones turbulentes de l’tcoulement sont consid&es. 

WWRMETRANSPORT IN EINER TURBULENTEN EBENEN NACHLAUFSTROMUNG 

Zusammenfaswng-Es wurden Messungen iiber die mittleren lings- und quergerichteten W;irmestriime i 
dem selbsterhaltenden Gebiet einer turbulenten ebenen Nachlaufstriimung vorgestellt. Mit Hilfe diese 
Messungen und eines ZeitmaBstabes, der auf der Temperaturvarianz und der mittleren Temperatul 
Dissipation beruht, werden numerische Werte fiir die Konstanten vorgeschlagen, die in den derzeiti 
benutzten Modellen fiir die Wechselwirkung von Temperatur- und Druckgradienten benutzt werder 
Abgesehen vom iiuI3eren pulsierenden Bereich wurde der quergerichtete W&mestrom in einfacher Weis 
in Relation zur quergerichteten Reynolds’ schen Schubspannung gesetzt. Diese einfache Beziehun 

empfiehlt sich, wenn nur turbulente Strijmungszonen betrachtet werden. 

TEI-IJIOI-IEPEHOC B TYPBYJIEHTHOM I’LJIOCKOM CJIEAE 

AmoTalpm-~3MepeHbI 3IiaveHmcpeAHsiX IIpOAOnbHbIX Ei nonepeqHbIx TeIInOBbIX IIOTOKOB B aBTOM( 

AeJlbHOft o6naclu Typ6yAeHTHOr0 IIJIOCICOrO CneAa. &iCIIOJIb3yJI p3ynbTaTbI 3THX H3Mep,ZHHfi 

Macurra6 B~MeliH, ~HOBaHHbI~HaAHCne~HwEI~e~eltCKOP~WAHCCBIIa~WTeMnepaTypHbIX~nyI 

TyaI@,lT~J(JIOWibl 'IUCJIeHHbIe 3Ha'IeHUR KOHCTaHT,BXOA5TlIWiX B HCllOJIb3yeMbIe B HaCTOffIUee B&EM 

MoAem s3amoAePcTem Memy rpaweHTa_ TehfnepaTypbI H nasnetiwn. 3a ncanroSemiehi mreume 
06naCTHnepeMeXoUomeiiCa T~6yneHTHOCTH,lIOIIe~PHbIiiTeIUIOBOii nOTOK HaXOAIiTCff B IIpOCTOii3aBi 

CHMOCrHOTHa~~K)l(eHHR~e~HOAbACa,B~O6eHHocniB3OHaXTyp6y~eH~HO~OTe~eH~~. 


